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Abstract- This study explores the impact of weather features on short to medium electricity 
load prediction across diverse geographical locations. Using hourly load data, we evaluated 
the effectiveness of several feature selection methods, including Mutual Information (MI), 
Principal Component Analysis (PCA), Lasso, and Heatmap correlation. We benchmarked 
these feature selection methods with a hybrid deep learning model to investigate the impact 
of choosing the correct multiple weather features instead of temperature. For this purpose, 
we practiced different combinations of temperature, relative humidity, dew point, air 
pressure, and wind speed benchmarked with the base case of single feature (temperature). 
The comparison was performed based on the load prediction accuracy improvement. The 
hybrid Artificial Neural Network (ANN) and temporal setup was implemented to predict 
energy loads across four different lead times (1, 6, 12, and 24 hours ahead) to not only study 
the feature selection methods, but also its behavior at different lead time predictions. 
Moreover, this study inspected the dynamic behavior of weather features selection by 
location to explore the need for location-specific feature engineering. All steps and theories 
were examined by a real-world dataset from a location of interest and the result was 
visualized across the geographical extent, offering insights into the spatial variability of 
feature importance. Future work will investigate the development of lead-time-specific 
models to further improve load prediction accuracy. This research highlights the 
importance of an in-depth inspection of weather feature selection and its dynamic behavior 
for enhancing energy load forecasting models. 
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I. INTRODUCTION 
 

Effective energy load forecasting is essential for 
optimizing grid operations, particularly as renewable 
energy sources become more integrated into power systems. 
Accurate load prediction helps ensure the stability and 
efficiency of energy grids. Traditionally, temperature has 
been the primary weather variable used in forecasting 
models due to its significant impact on energy demand [1]. 
The concept of degree-days, for instance, is widely used to 
measure the influence of temperature on electricity 
consumption [2-4]. However, the relationship between 
weather and energy demand is more complex than 
temperature alone, and other meteorological factors can also 
play a crucial role in predicting loan [5]. 

This research aims at enhancing the reliability and 
precision of energy load prediction tools through machine 
learning techniques. As energy systems evolve, the need for 

accurate forecasting becomes increasingly critical, 
especially as we move towards more sustainable and 
decarbonized grids. The ability to predict energy demand 
accurately is not just a technical challenge but a necessary 
step for enabling smarter grid operations and integrating 
renewable energy sources effectively. 

Our approach begins by examining various feature 
selection methods and benchmarking them with a hybrid 
machine learning model composed of the temporal nature 
of load and weather data with artificial neural network 
(ANN) structure. This investigation aims to identify optimal 
and practical methods and to study the impact of different 
combinations of weather features, i.e. temperature, relative 
humidity, air pressure, dew point, and wind speed, on the 
reliability and robustness of load prediction. The study also 
explores the potential correlation between weather feature 
selection and geological location, as well as its sensitivity to 
the lead time range. 

This paper represents one of the initial steps in improving 
the accuracy of conventional models for energy load 
prediction by utilizing real-world data. By digging deeper 
into weather-related input parameters and their temporal 
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depth, we aim to uncover insights that can lead to more 
accurate predictions, particularly over extended periods. 

The findings presented here serve as the foundation for 
future work. Upcoming publications will test our models on 
various datasets, refine the methodology to accommodate 
the growing complexity of energy markets, and address 
challenges posed by sustainability goals, decarbonization 
efforts, and extreme weather conditions. This work 
ultimately seeks to contribute to the development of more 
reliable, scalable, and adaptable forecasting tools that can 
meet the demands of future energy systems. 
 

II. LITERATURE SURVEY AND BACKGROUND 
 

The field of energy load forecasting has long recognized 
the importance of weather variables, primarily focusing on 
temperature due to its direct influence on heating and 
cooling demands. However, recent studies have started to 
shed light on the significance of incorporating additional 
weather features to improve prediction accuracy. This 
evolving understanding is exemplified in the work of Maia-
Silva et al. 2020 [6], who emphasized that while 
temperature is a crucial factor, it alone is insufficient to 
capture the full spectrum of climate sensitivity in energy 
demand. They highlighted the critical role of humidity in 
residential space cooling demand, demonstrating that 
neglecting this factor can lead to significant 
underestimations of future demand, especially under 
warming scenarios. This finding underscores the necessity 
of a more comprehensive approach to weather data 
inclusion, one that accounts for humidity and other climatic 
stressors. 

Building on this notion, Beccali et al. 2007 [7] introduced 
a forecasting model based on an Elman artificial neural 
network, focusing on the suburban area of Palermo, Italy. 
Their work reinforced the importance of the Humidex 
index, which integrates outdoor air temperature and 
humidity to evaluate household electricity consumption 
influenced by HVAC appliances. Despite their 
advancements, their study was geographically limited and 
did not provide a detailed comparison of various weather 
features across different locations. 

Mirasgedis et al. 2004 [8] took a further step by utilizing 
both primitive (relative humidity) and derived (heating and 
cooling degree-days) meteorological parameters to analyze 
electricity consumption over a decade. While their medium-
term demand estimation highlighted the relevance of these 
weather variables, their approach was constrained by the use 
of monthly and yearly average consumption data, lacking 
the granularity needed for more precise forecasting. 

Friedrich et al. 2013 [9] explored the decomposition of 
electricity load into weather-independent and weather-
dependent portions in Abu Dhabi, UAE, identifying key 

weather drivers such as temperature, humidity, solar 
irradiance, and wind speed. Their regression model 
effectively segregated these influences but was again 
limited to a single location, raising questions about the 
generalizability of their findings. 

Wang et al. 2004 [10] and Rastogi et al. 2021 [1] have 
also explored this topic by focusing on the segmented 
relationship between electricity load and weather features in 
different U.S. regions. They confirmed the critical role of 
humidity alongside temperature in predicting energy 
demand, yet their analyses were still predominantly limited 
to these two variables, overlooking the potential 
contributions of other weather factors. 

Ihara et al. 2008 [11] provided additional insights into the 
sensitivity of electricity consumption to temperature and 
humidity, using data from Tokyo and various U.S. regions, 
respectively. Their methodologies highlighted the need for 
high-precision estimates but did not fully explore the 
combined effects of multiple weather variables. 

These studies collectively advance our understanding of 
the intricate relationship between weather and energy 
demand, but they also highlight significant gaps. Many 
focused on limited geographical areas or specific datasets, 
lacked a comprehensive comparison of diverse weather 
features, and often used coarse temporal resolutions. These 
limitations underscore the need for a more detailed and 
expansive approach. 

Our research addresses these gaps by incorporating a 
wider range of weather features and analyzing data at a finer 
temporal (hourly) and spatial (city-level) resolution 
utilizing real-world data. We aim to quantify the importance 
of each weather parameter, providing a more nuanced and 
comprehensive understanding of their roles in energy load 
forecasting. By building on the foundational work of these 
previous studies, we seek to enhance the robustness and 
accuracy of predictive models, ultimately contributing to 
more resilient and efficient grid operations. 

 
III. METHODOLOGY 

 
In this study, we explored how various weather 

parameters influence energy load prediction, inspecting 
whether these effects differ across locations. Temporal 
variables such as load history, weather patterns, and the 
calendar effect were also analyzed for their impact on model 
robustness. Data from the weathersource.com and Alberta 
Electric System Operator (AESO), and calendar sources 
were preprocessed to align timestamps and prepare for 
predictive modeling. To identify the most relevant features, 
we employed four feature selection methods: Mutual 
Information, Principal Component Analysis (PCA), Lasso 
Regression, and Correlation Heatmaps, evaluating their 
effectiveness across multiple cities in Alberta. A hybrid 
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model (time-series temporal matrix in an ANN structure) 
was utilized to run several scenarios and benchmark the 
preliminary evaluation from the aforementioned feature 
selection methods. These steps provided a comprehensive 
analysis of key weather features for having an optimized 
and reliable model for accurate load prediction. 

 
III.I. Data and Pre-Processing: 

Using real-world load and weather data, we conducted an 
in-depth analysis of how different weather parameters 
impact energy load prediction and if different locations 
show different behavior . 

Unlike most existing models that predominantly rely on 
temperature, our research investigated the effect of 
inclusion of other weather features and if it can improve 
load prediction accuracy. The research also studied the 
potential variation of this behaviour across different cities 
in the area of study. 

Furthermore, to optimize the robustness of the developed 
ML model, we investigated the effective use of temporal 
variables such as load and weather, as well as a modified 
variable associated with hour of the day.  

To practice our theories, the following data sources were 
utilized: 

Load Data: The load data was obtained from the Alberta 
Electric System Operator (AESO) for 42 major cities in 
Alberta, spanning from January 2011 to October 2023. The 
data, recorded hourly and measured in megawatt-hours 
(MWh), is comprehensive and contains no missing values 
[12]. The geographical distribution of these cities is 
illustrated in Error! Reference source not found.. 

Weather Data: Weather data corresponding to the same 
period and frequency as the AESO load data was sourced 
from weathersource.com [13]. The available features based 
on the local timestamp include: 

• Cloud Coverage: The fraction of the sky covered by 
clouds . 

• Dew Point: The temperature at which air becomes 
saturated with moisture . 

• Feels Like: The apparent temperature considering 
humidity and wind . 

• Freezing Rain Flag: Indicates the occurrence of 
freezing rain (boolean) . 

• Heat Index: The apparent temperature considering 
humidity. 

• Ice Pellets Flag: Indicates the occurrence of ice 
pellets (boolean) . 

• Air Pressure: The force exerted by the atmosphere 
at a given point . 

• Precipitates: Any form of water, liquid or solid, 
falling from the sky . 

• Pressure Tend: The change in air pressure over 
time. 

• Provisional Flag: Marks provisional data subject to 
revision (boolean) . 

• Solar Radiation: The intensity of sunlight reaching 
the ground . 

• Rain Flag: Indicates the occurrence of rain 
(boolean) . 

• Relative Humidity: The amount of moisture in the 
air relative to what the air can hold at that 
temperature. 

• Snow Flag: Indicates the occurrence of snow 
(boolean) . 

• Snow Fall: The amount of snow that has fallen. 

• Specific Humidity: The mass of water vapor per 
unit mass of air. 

• Temperature: The degree of heat present in the 
atmosphere . 

• Visibility: The distance one can clearly see . 

• Wet Bulb: The lowest temperature air can reach by 
evaporative cooling . 

• Wind Chill: The perceived decrease in air 
temperature felt by the body due to wind . 

• Wind Direction: The direction from which the wind 
is blowing . 

• Wind Speed: The rate at which air is moving 
horizontally. 

Calendar Data: Python's calendar library was employed to 
identify working and non-working dates, contributing to 
the temporal analysis . 

Python was used to clean and integrate these data sources 
into a unified format, either as CSV files or data frames. The 
integration process ensured that the timestamps of the load 
and weather data were aligned, facilitating seamless 
analysis. 
 
III.II. Feature Selection and Analysis 

Feature selection is a crucial step in machine learning that 
involves identifying and choosing the most relevant features 
from a dataset for building a predictive model. The process 
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serves multiple purposes, including enhancing model 
performance, reducing overfitting, improving model 
interpretability, and decreasing computational costs [14]. 
By selecting the most impactful variables, feature selection 
ensures that the machine learning model focuses on the key 
information while discarding irrelevant or redundant data 
that may otherwise introduce noise or confusion [15]. 

In predictive modeling, especially with large datasets, it’s 
common to encounter many input variables, some of which 
may not significantly contribute to the target prediction. For 
instance, in time series forecasting, like energy load 
prediction, where weather conditions and calendar variables 
are used as inputs, not all weather parameters will have a 
meaningful influence on the model. Feature selection 
techniques are employed to filter out the less relevant 
features, thereby reducing the dimensionality of the dataset 
and improving the overall efficiency of the learning process 
[5]. 

One widely used approach to feature selection is 
statistical-based methods, which involve evaluating the 
relationship between each input variable and the target 
variable using statistical measures. These techniques assess 
the strength of each feature’s contribution to the model by 
analyzing the correlation or association with the output 
variable (in our case, energy load). This allows practitioners 
to rank the features based on their importance and select 
those with the strongest relationship to the target [16]. 

However, choosing the appropriate statistical measures 
for feature selection depends heavily on the type of data. For 
example, if both the input and output variables are 
continuous, correlation coefficients such as Pearson’s 
correlation can be applied. For categorical variables, 
measures like mutual information or Chi-square may be 
more suitable. The challenge lies in selecting the right 
statistical technique for the dataset in question, ensuring that 
the best set of features is identified to build an optimized 
model [17]. 

Feature selection offers several key advantages [18]: 

Enhanced Model Performance: By focusing on the most 
relevant features, the model becomes more accurate and 
efficient, as it can better learn from the data . 

Reduced Overfitting: Including too many irrelevant 
features can lead to overfitting, where the model performs 
well on training data but fails to generalize to unseen data. 
Feature selection helps prevent this by removing noise . 

Improved Interpretability: A model with fewer features is 
not only easier to interpret but also more transparent. This 
is crucial when explaining the model’s behavior to 
stakeholders or for regulatory purposes . 

Faster Training and Inference: With a smaller set of 
features, the time required for both training the model and 

making predictions is significantly reduced, making the 
process more computationally efficient. 

In this research, the goal was to develop a robust model 
for energy load prediction by selecting the most impactful 
weather features. While temperature has traditionally been 
the main focus in load prediction models, our work aimed 
to explore the inclusion of additional weather parameters 
such as relative humidity, wind speed, outside pressure, and 
dew point. These features, although less commonly used, 
were hypothesized to have a significant effect on energy 
consumption depending on the geographic location. 

From the comprehensive set of weather features, 
temperature, relative humidity, dew point, wind speed, and 
air pressure were selected for detailed analysis. These five 
weather parameters were chosen based on their established 
physical relationships with energy consumption as justified 
below. They represent a comprehensive set of factors that 
can significantly influence energy demand, making them 
suitable for detailed analysis in this research. While other 
weather parameters may also play a role, these five are 
considered to have the most direct and significant impact on 
energy load, providing a solid foundation for feature 
selection in this domain. 

Reasons that temperature, relative humidity, dew point, 
wind speed, and air pressure were chosen for feature 
a n a l y s i s : 

Temperature: 

• Direct correlation: Temperature is a primary driver of 
energy consumption, especially for heating and cooling 
systems. It is the most important feature, if not the only 
one, in almost all load prediction models. Higher 
temperatures typically lead to increased cooling loads, 
while lower temperatures necessitate increased heating 
loads. 

• Physical basis: Temperature directly influences the rate 
of heat transfer between buildings and their 
surroundings . 
 

Relative Humidity: 

• Impact on HVAC systems: High humidity can increase 
the cooling load by making it more difficult for air 
conditioners to dehumidify the indoor air . 

• Comfort levels: Humidity affects human comfort levels, 
influencing heating and cooling demands . 

Dew Point: 

• Temperature-humidity relationship: Dew point is a 
measure of the amount of water vapor in the air. It's 
closely related to temperature and humidity, making it a 
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valuable parameter for understanding the overall 
atmospheric conditions . 

• Condensation and energy consumption: High dew points 
can lead to increased condensation and moisture-related 
issues in buildings, affecting energy consumption . 

Wind Speed: 

• Heat transfer: Wind can influence heat transfer between 
buildings and the environment. Higher wind speeds can 
increase heat loss in colder weather and reduce cooling 
loads in warmer weather . 

• Ventilation: Wind can affect the effectiveness of 
ventilation systems, which can impact energy 
consumption . 

Air Pressure: 

• Weather patterns: Air pressure is associated with various 
weather patterns, including storms and temperature 
changes. It can indirectly influence energy consumption 
by affecting heating and cooling needs . 

• Ventilation: Changes in air pressure can affect the 
efficiency of ventilation systems. 

Having chosen the features of interest, the next step is the 
method to analyze their importance and benchmark the 
result. In this study, four feature selection methods were 
utilized to determine the most important weather and 
temporal features for energy load prediction: Mutual 
Information, Principal Component Analysis (PCA), Lasso 
Regression, and Correlation Heatmaps. Each method offers 
distinct advantages and challenges for handling feature 
selection in machine learning models. 

 
III.II.I. Mutual Information (MI) Method 
 

Mutual Information (MI) was first proposed by Shannon 
1963 [19] in the context of information theory and further 
developed by Cover and Thomas 2006 [15]. MI measures 
the amount of shared information between two variables, 
quantifying their dependency. In the context of feature 
selection, mutual information is used to measure the 
dependency between input features and the target variable. 

MI has the advantage of capturing non-linear 
dependencies between features and the target, making it 
suitable for complex datasets where linear correlation may 
not be sufficient. In our application of energy load 
prediction, mutual information helps us understand how 
each weather feature contributes to the variability in energy 
load. 
Pros: 

• Captures non-linear relationships between features and 
the target. 

• Does not assume any specific model structure. 

Cons: 

• Sensitive to the number of samples in the dataset. 

• Requires discretization or kernel density estimation, 
which can introduce bias. 

 
III.II.II. Principal Component Analysis (PCA) 

 
PCA was first introduced by Pearson in 1901 [20] and 

later generalized by Hotelling 1933 [21]. PCA is a 
dimensionality reduction technique that identifies linear 
combinations of features that capture the maximum 
variance in the data. It does this by transforming the input 
features into new orthogonal components called principal 
components, which are ranked by the amount of variance 
they explain. 

In load prediction, PCA allows us to reduce the 
dimensionality of weather and temporal features, retaining 
only the components that contribute the most to load 
variability. This aids in simplifying the model without 
sacrificing predictive power. 
Pros: 

• Reduces dimensionality, simplifying the model and 
mitigating overfitting . 

• Identifies the most significant directions of variance in 
the dataset. 

Cons: 

• Assumes linear relationships between features . 

• Loses interpretability, as principal components are 
combinations of original features. 

 
III.II.III. Lasso Regression (L1 Regularization) 

 
Lasso (Least Absolute Shrinkage and Selection Operator) 

was introduced by Tibshirani in 1996 [22]. Lasso is a linear 
regression technique that introduces L1 regularization, 
which enforces sparsity in the model by shrinking some 
coefficients to zero. This effectively performs both feature 
selection and regularization, helping to mitigate overfitting 
by reducing the complexity of the model.  

In the context of energy load prediction, Lasso selects the 
most relevant weather and temporal features by shrinking 
the less important feature coefficients to zero, providing a 
sparse solution that simplifies interpretation and reduces the 
risk of overfitting. 
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Pros: 

• Simultaneously performs feature selection and 
regularization. 

• Provides a sparse solution, enhancing model 
interpretability . 

Cons: 

• Sensitive to the choice of the regularization parameter 
λ . 

• Can be unstable if features are highly correlated. 

 
III.II.IV. Correlation Heatmap 

 
The concept of correlation, specifically Pearson 

correlation, was first introduced by Pearson in 1895 [23]. 
The correlation matrix computes pairwise correlation 
coefficients between features, quantifying the linear 
relationships between them. This method is useful for 
identifying highly correlated features and understanding 
their direct relationships with the target variable. 

For our study, we used correlation heatmaps to visualize 
the relationships between weather features and energy load. 
This method provides an intuitive way to identify both 
positive and negative correlations, enabling us to select 
features that are strongly related to energy load. 
Pros: 

• Simple and intuitive to understand. 

• Visual representation of feature relationships. 
Cons: 

• Only captures linear relationships. 

• Sensitive to noise in the data. 

Each of these methods was leveraged to highlight key 
weather features that influence energy load prediction, and 
in combination, they provided a comprehensive 
understanding of the feature space. 

 
IV. RESULTS 

 
To evaluate the performance of different feature selection 

methods for energy load prediction, we randomly selected 
seven cities across Alberta: Calgary, Fort McMurray, Cold 
Lake, Red Deer, and Provost. The four feature selection 
techniques – Mutual Information (MI), Principal 
Component Analysis (PCA), Lasso Regression (L1), and 
Heatmap correlation—were applied to the dataset for each 
city to rank the most important weather features. The 
outcome of these experiments is summarized in Table 1. 

 

IV.I. Observations and Performance Comparison: 

Mutual Information (MI) : 
Surprisingly, the MI method returned exactly the same 

feature ranking for all cities. The top five features were 
consistently: temperature, dew point, relative humidity, 
mean sea-level pressure, and wind speed, in that order. 
While MI is known to capture non-linear relationships 
between features and the target variable, this consistency 
across all cities is somewhat unexpected. A location-based 
behavior in feature importance would be more in line with 
physical expectations, as energy load should be influenced 
by unique local weather conditions. This lack of variation is 
also inconsistent with findings in other studies, such as the 
work by Maia-Silva et al. (2020), which reported location-
dependent variations in weather impact on load prediction. 

Principal Component Analysis (PCA): 
PCA, while aiming to capture variance in the data, 

exhibited similar behavior to MI. The top features identified 
were mostly the same across cities, except for a swap 
between relative humidity and air pressure. This suggests 
that PCA, despite its dimensionality reduction capabilities, 
may be too generalized to capture city-specific variations in 
weather's influence on load. The transformed feature space 
created by PCA also reduces the direct interpretability of the 
selected features, which further complicates its utility in 
understanding local weather impacts. 

Lasso Regression (L1): 
The Lasso method provided more variability in feature 

importance across cities but sometimes produced rankings 
that seemed counterintuitive. For instance, in Calgary, 
Lasso ranked wind speed as the most important feature, 
while for Edmonton, dew point was ranked highest, with 
temperature only in third place. These results conflict with 
physical expectations and prior research, where temperature 
typically plays a dominant role in energy load predictions. 
The method's focus on penalizing feature coefficients might 
sometimes over-penalize features, leading to unexpected 
rankings. This inconsistency questions the reliability of 
Lasso for this particular application. 

Heatmap (Correlation-Based Method) : 
In contrast to the other methods, the Heatmap correlation 

approach provided a more varied and location-specific 
feature ranking. The top feature for each city varied between 
temperature, dew point, and relative humidity, which aligns 
well with physical expectations. For example, temperature 
and relative humidity were identified as top contributors for 
load prediction in most cities, with dew point emerging as a 
secondary feature, which is in line with the role these 
weather parameters play in energy demand variations. The 
Heatmap method’s output reflects a more logical and 
legitimate prediction of feature importance, grounded in the 
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actual physical relationships between weather variables and 
energy load. 

 
IV.II. Preliminary Evaluation 

 
As represented above, MI and PCA don’t exhibit the 

sensitivity to location-specific variations, as proposed by 
Maia-Silva et. al (2020). Lasso, though flexible, sometimes 
produces rankings that contradict physical intuition, further 
reducing confidence in its applicability for this task. For 
instance, temperature which is, undoubtedly a vital 
parameter to predict load, is at the bottom of the list for the 
city of Cold Lake. To provide a more robust and practical 
approach while minimizing potential bias, we implemented 
various combinations of features (limited to three at most to 
better visualize the impact of each feature) for a selection of 
randomly chosen cities. We then applied a machine learning 
(ML) model to benchmark the precision and performance of 
these feature combinations. This benchmarking process is 
designed to identify the feature selection method that most 
accurately supports energy load prediction across diverse 
geographic regions. 

Before discussing the results, we first detail the ML setup 
used to benchmark the following combinations of weather 
features (along with additional input features, as described 
in the next section): 
• Temperature only 
• Combination 1: ['temp', 'dewPt', 'relHum'] 
• Combination 2: ['temp', 'dewPt', 'mslPres'] 
• Combination 3: ['temp', 'windSpd', 'mslPres'] 
• Combination 4: ['temp', 'windSpd', 'relHum'] 
• Combination 5: ['temp', 'dewPt'] 
• Combination 6: ['temp', 'relHum'] 

 
IV.III. Development of the Predictive Model 

 
To evaluate our hypothesis that incorporating additional 

weather features and temporal adjustments leads to more 
robust energy load predictions, we developed a temporal-
based Artificial Neural Network (ANN) model. This model 
leverages multiple input features, capturing both historical 
and recent data, to predict energy load for the lead time(s) 
ahead. The input features for the model include: 
1. Load History: Temporal data with a lagged time of a 

selected number of hours, capturing the recent trends 
and patterns in energy consumption. The depth of 
number of hours selected is part of the model 
optimization which will be presented in our next 
publication. 

2. Weather Features: A case dependent input – as discussed 
above – to practice and benchmark 7 scenarios of 
different weather features combinations. This feature is 

also a temporal input and a history of weather features 
with chosen depth was fed into the model. The depth of 
this feature was also a model optimization parameter that 
will be explained in our next publication.  

3. Calendar Effect, including: 
a. Hour of the Day: Sine and cosine transformed 

representations of the hour of the day (elaborated 
below), ensuring the model accurately captures the 
cyclical nature of daily energy consumption patterns. 

b. Working/Non-working Days: Binary indicator 
capturing whether a given day is a working day or a 
non-working day, reflecting the variation in energy 
load based on human activities and calendar events. 

The Artificial Neural Network (ANN) model employed 
in this study follows a deep feed-forward architecture, 
optimized for energy load prediction. The model consists of 
eight fully connected layers, with ReLU (Rectified Linear 
Unit) activation functions applied to each layer to introduce 
non-linearity. The input layer accepts features 
corresponding to the weather parameters, while the final 
output layer consists of a single neuron, designed for the 
regression task of load prediction. [24] 

The network architecture begins with a large number of 
neurons in the first hidden layer (2048), followed by 
progressively smaller layers with 1024, 512, 256, 128, 64, 
32, and 8 neurons, respectively. This design allows the 
network to capture complex patterns in the input data by 
progressively reducing the dimensionality of the feature 
space. 

To optimize training, the model uses the Adam optimizer, 
starting with a learning rate of 0.01, and employs a mean 
squared error (MSE) loss function, which is standard for 
regression tasks. A learning rate scheduler adjusts the 
learning rate dynamically during training. The model was 
trained for 100 epochs with a batch size equal to the lag size, 
and validated using a separate validation dataset to monitor 
performance [25]. 

The model is designed to predict the energy load for one 
hour ahead, as the only output feature, which could be 
repeated in a loop to predict a period of lead time, e.g. 72 
hours ahead, providing a short to mid-term forecast aiding 
grid management and energy planning. The model was used 
to predict only one step for 1, 6, 12, and 24 hours ahead. It 
enables us to investigate the impact and effectiveness of 
weather feature selections on different lead times.  

Of the whole dataset, 2011 to 2017 was assigned to 
training, 2018 to validation, and 2019 to 2020 to test dataset, 
to accomplish the data splitting step. Afterwards, 
standardization and normalization were applied to the train, 
validation, and test datasets based on the training dataset.  

To complete the input data, the calendar effect was 
incorporated by distinguishing between working and non-
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working days, which reflects the varying energy 
consumption patterns associated with different types of 
days. On working days, energy demand is typically higher 
due to increased industrial, commercial, and office 
activities, while non-working days, such as weekends and 
holidays, often see reduced consumption as businesses close 
and residential use becomes more prominent. By integrating 
the calendar date into the model, we can capture these 
behavioral shifts in energy usage, which are essential for 
improving the accuracy of load predictions. Understanding 
the influence of calendar variations allows the model to 
adapt to the cyclical nature of energy demand, providing 
more precise forecasting, especially when predicting loads 
during holiday seasons or over weekends. Time of day is 
another critical factor that significantly impacts energy 
consumption. Typically, energy usage patterns follow daily 
cycles, with peak and off-peak hours corresponding to 
human activities such as work, leisure, and sleep. To capture 
these cyclical patterns, it is essential to represent the 24-
hour format in a way that reflects the continuous and cyclic 
nature of time. 

Using the 24-hour format directly in a machine learning 
model can be problematic. For instance, while 23:00 and 
1:00 are just two hours apart, their numerical 
representations (23 and 1) are far apart, which misrepresents 
their true relationship. To address this issue and optimize 
the use of hour of the day, we employed sine and cosine 
transformations to encode the hour of the day, thereby 
maintaining the cyclical nature of time .For this purpose, 
sine and cosine transformations were utilized. The sine and 
cosine transformations convert each hour into two 
components that capture the cyclical relationship. The 
formulae for these transformations are: 

 
ℎ𝑜𝑢𝑟_𝑠𝑖𝑛 = sin (2𝜋. ℎ𝑜𝑢𝑟/24) 
ℎ𝑜𝑢𝑟_𝑐𝑜𝑠 = 𝑐𝑜𝑠 (2𝜋. ℎ𝑜𝑢𝑟/24) 

 
By transforming the hour of the day using these sine and 

cosine functions, we create two continuous features that 
maintain the cyclical nature of time.  

This approach ensures that the model correctly 
understands the proximity of 23:00 to 1:00 and captures the 
cyclical daily patterns in energy consumption. 

Incorporating these transformed time features into our 
model enhances its ability to predict energy load by 
accurately reflecting the underlying temporal dynamics. 
This transformation aligns the hour-based data with the 
natural periodicity of daily human activities, leading to 
more logical and robust forecasting results. 

 
IV.IV. ANN Model Setup and Training 
 

The ANN was trained to predict the load one hour ahead 
using the following inputs: 
• Load history (temporal with lagged time of n hours – the 

depth of this selection, n, was optimized which will be 
presented in our next publication) 

• Weather history (temporal with lagged time of m hours 
– the depth of this selection, m, was optimized which 
will be presented in our next publication) 

• Hour of the day (sine and cosine transformed) 
• Working/non-working days 
We incorporated the time-series nature of load and weather 
data to be utilized as input for an ANN structure. Simply 
put, the whole input matrix can be described by the 
following formula: 

𝑦̂𝑡+1 = 𝜎 (∑ 𝜔𝑖. 𝑥𝑡−𝑖

𝑛

𝑖=1

+ ∑ ∑ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑘

𝑚

𝑗=1

𝑝

𝑘=1
+ 𝜔ℎ𝑠. ℎ𝑜𝑢𝑟_𝑠𝑖𝑛 + 𝜔ℎ𝑐. ℎ𝑜𝑢𝑟_𝑐𝑜𝑠

+ 𝜔𝑐. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 + 𝑏) 

Where: 
𝑦̂𝑡+1 is the predicted load at time 𝑡 + 1, n is depth of load 
history selected as input, p is total number of weather 
features selected, m is depth of weather history selected as 
input, 𝑥𝑡−1 is the load at time 𝑡 − 𝑖 for 𝑖 = 0, 1, 2, …, 
ℎ𝑜𝑢𝑟_𝑠𝑖𝑛 and ℎ𝑜𝑢𝑟_𝑐𝑜𝑠 are the hour (time) of the day (24-
hour format) transformed by sine and cosine transformers, 
respectively, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 illustrates if the date is a 
working or non-working calendar date (1 for working and 0 
for non-working including weekends and stat holidays), 
𝜔<𝑖𝑛𝑑𝑒𝑥> are the weights, 𝑏 is the bias, and 𝜎 is the 
activation function  - ReLu in our case: 𝑅𝑒𝐿𝑢(𝑧) =
max (0, 𝑧). 

This is technically like a hybrid model that incorporates 
the temporal (time-series) nature of the data and ANN 
structure. 

The learning process involved minimizing the RMSE 
(Root Mease Square Error) loss function to adjust the 
weights and biases. 

To predict the load for a certain number of lead hours 
ahead, we can use the forecasts recursively: 

1. Predict the load for the next hour. 
2. Use the predicted load as the actual load at time t. 
3. Repeat steps 1 and 2 for 72 iterations. 
This iterative process allows us to extend the prediction 

horizon up to the desired number of hours by leveraging the 
model trained for 1-hour ahead predictions.  

 
IV.V. Scenario Analysis 
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Using the machine learning (ML) setup described earlier, 
we conducted a comprehensive analysis by running 112 
scenarios. These scenarios spanned across four randomly 
chosen cities (Calgary, Fort McMurray, Cold Lake, and Red 
Deer), seven different weather feature combinations, and 
four lead times (1, 6, 12, and 24 hours ahead). For each 
scenario, the model was tasked with predicting the load for 
50 randomly selected data points from the test dataset. The 
precision of these predictions was calculated, averaged, and 
then benchmarked for performance analysis 

Focusing on the one-hour-ahead prediction in a clear 
pattern emerges. With the exception of Provost, one of the 
weakest predictions consistently occurs when using only a 
single weather feature (temperature). Similarly, with the 
same exception, the most accurate predictions are obtained 
when temperature and dew point are selected, along with 
either relative humidity or air pressure. This pattern, 
however, does not hold uniformly for predictions at other 
lead times.  

Looking at all lead time predictions, it can be realized that 
while Calgary – a major city – maintains its dependency on 
multiple weather features, other cities such as Cold Lake 
and Red Deer show a reduced sensitivity to multiple 
features, suggesting that in some cases, temperature alone 
becomes more relevant. Nevertheless, with the exception of 
Red Deer, the load predictions for the other cities generally 
improve when additional weather features, aside from 
temperature, are included in the model. 

One key observation across all lead times is that adding 
more features is not always beneficial. For instance, in many 
cases, the inclusion of wind speed in the weather feature set 
tends to destabilize the predictions, making them more 
fragile. This indicates that more features do not always 
enhance model performance, and in some cases, might 
introduce noise, detracting from predictive accuracy. 

An important takeaway is that the model’s sensitivity to 
feature combinations varies not only across locations but 
also across different lead times. This suggests that a more 
practical approach could involve developing individually 
trained ML models for different lead times or at least for 
distinct lead time ranges. This concept warrants further 
investigation and is currently being explored by our 
research group for future publication. 

However, if simplicity is preferred, we can average the 
precision across the four lead times to obtain a more general 
performance benchmark. This aggregate analysis aligns 
most closely with the one-hour-ahead lead time results, and 
thus can be qualitatively used to rank feature combinations. 

To address the key question of this research—
determining the most effective method for weather feature 
selection—we compared the performance of the ML model 
with the feature selection methods previously discussed. It 

is essential to note that the correlation methods we explored 
primarily assess row-level data (i.e., the dependency of the 
output on a single row, which corresponds to a one-hour-
ahead prediction). Therefore, a fair comparison involves 
benchmarking the feature selection methods against the 
one-hour lead time results produced by the ML model. 

From a physical perspective, we have already discounted 
the reliability of the Lasso method due to its inconsistent 
feature rankings. Analyzing the relative error plot for one-
hour-ahead predictions, we observe minimal differences 
between combinations 1 and 2 (the selection of temperature 
and dew point, along with either relative humidity or air 
pressure). Therefore, our focus shifts to the two-feature 
combinations—combinations 5 (temperature and dew 
point) and 6 (temperature and relative humidity)—to 
compare them with the top two prioritized features selected 
by the feature selection methods. 

For Calgary, combination 5 (temperature and dew point) 
yields a lower error than combination 6 (temperature and 
relative humidity), aligning well with the feature rankings 
suggested by the Heatmap method. Conversely, for Cold 
Lake, combination 6 outperforms combination 5, which 
also agrees with the Heatmap results. In contrast, MI and 
PCA fail to demonstrate the expected location-specific 
sensitivity, offering identical feature importance across 
cities, which further undermines their suitability for this 
task. 

In conclusion, based on the analysis of our dataset, the 
Heatmap method offers the most reliable dependency 
calculation for feature selection, particularly in its ability to 
account for geographic and temporal variations in weather-
load relationships. 

 
IV.VI. Mapping and Visualization 
 

, with a clearer understanding of the importance of 
weather features and the identification of the optimal feature 
selection method, we extended our analysis to visualize 
these patterns across the entire dataset by mapping them 
onto a geographic representation of Alberta. To achieve 
this, we selected the top five weather features—
temperature, relative humidity, dew point, air pressure, and 
wind speed—and applied the Heatmap method to prioritize 
these features for each city in the dataset.  

A distinct pattern emerges from the map. While 
temperature consistently plays the most significant role in 
load prediction across Alberta, relative humidity becomes 
notably more important in the southern part of the province 
and parts of the western region compared to other areas. 
This trend is less pronounced in the northern regions, but 
still observable. Ignoring humidity in the southern and 
western parts of Alberta may introduce significant errors in 
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energy load prediction, as these areas show a greater 
dependency on this feature. 

This visualization highlights the regional variations in 
feature importance, emphasizing the need for tailored 
models that account for these geographic differences when 
predicting energy load. The implications of this finding are 
clear: incorporating localized weather patterns into energy 
load models is crucial for improving prediction accuracy, 
especially in regions where factors such as humidity exhibit 
a stronger influence. 

In other words, some key observations emerged from this 
analysis could be summarized as: 
• Location-Based Variability: The impact of weather 

features on energy load is highly location-dependent, 
with different cities displaying distinct patterns. This 
variability underscores the importance of localized 
analysis in energy load forecasting. 

• Behavioral Trends: Despite the location-based 
differences, certain behavioral trends are evident across 
the province: 
o Temperature: Temperature consistently has the most 

significant impact on energy load across all cities. 
However, this impact is notably larger in the eastern 
part of Alberta. This region experiences colder 
winters, likely increasing the demand for heating and 
thus amplifying the influence of temperature on 
energy consumption. 

o Humidity and Dew Point: As we move west and 
south within Alberta, the importance of humidity and 
dew point increases. These regions typically have 
milder winters and higher humidity levels, making 
these factors more relevant in determining energy 
demand, particularly for cooling during the warmer 
months. 

 
 

V. SUMMARY AND CONCLUSION 
 

The primary objective of this study was to identify the 
critical weather features required to construct a robust 
model for energy load prediction. Our findings revealed that 
relying solely on temperature is inadequate for accurate load 
forecasting. Instead, the inclusion of additional weather 
features significantly improves prediction accuracy, with 
the specific features required varying by geographical 
location. Using data from Alberta, provided by AESO, and 
weather parameters from Weathersource.com, we observed 
clear geographic dependencies in the impact of weather 
features on energy load, highlighting the need for location-
specific feature engineering. 

To address this, we applied a hybrid Artificial Neural 
Network (ANN) and temporal model to predict hourly 

energy loads at various lead times, utilizing data from 42 
major cities across Alberta. Our method involved selecting 
input features, including temperature, relative humidity, 
dew point, air pressure, and wind speed, using four feature 
selection methods: Mutual Information (MI), Principal 
Component Analysis (PCA), Lasso regression, and 
Heatmap correlation. We then benchmarked these methods 
with a machine learning model that incorporated not only 
the temporal history of these weather features but also the 
temporal history of load data, the sine-cosine transformation 
of the hour of the day, and calendar day (working or non-
working). 

Through a comprehensive analysis, we identified the 
most influential weather features for a set of randomly 
selected cities and determined the most effective feature 
selection methodology. The use of the optimal feature 
selection method enabled us to study and visualize the 
importance of weather features for all cities, resulting in a 
clear behavioral pattern mapped geographically across 
Alberta. 

An additional insight from this study was that grouping 
lead times and developing individual machine learning 
models for each group could potentially provide more 
accurate and reliable load predictions. This approach is 
currently under investigation and will be the subject of 
future publications. 

This study demonstrates that the combination of careful 
feature selection, appropriate temporal transformations, and 
a deep understanding of the local climate's influence on 
energy consumption can significantly enhance the accuracy 
of load prediction models. These insights contribute to the 
development of more precise and reliable forecasting tools, 
which are essential for efficient energy management and 
planning. 

To demonstrate the robustness of the model when all five 
weather features are used to predict the 72-hour lead time 
load for the city of Calgary, four randomly selected 
predictions are presented in Error! Reference source not f
ound.. These results highlight the model's reliability, which 
will be further explored in our future publications. 
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Table 1: Features prioritization by selected feature selection methods 
 

Method/City  
Calgary 

 
Fort McMurray Cold Lake  

Red Deer Provost 

MI 

     

PCA 

     

Lasso 

     

Heatmap 

     

Logo (color 
codes) 
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Figure 1 – Alberta transmission area based on AESO’s plan [12] 
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Figure 2 - Precision of different lead times by different combinations of weather features 
 

 

 
Figure 3 – Averaged precision of different feature selection for the selected cities 
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Figure 4 – Areal analysis of weather features importance (after detrending) 
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Figure 5 – Some prediction (red) vs. actual (blue) loads for the City of Calgary 
 

 

 
 
  


