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Abstract- This paper presents an in-depth investigation into Molten Carbonate 
Electrolysis (MCE), combining experimental research with advanced machine 
learning-based modeling. MCE is explored for its potential in producing hydrogen 
and syngas, which are critical components for sustainable energy systems. This 
study examines the behavior of a single molten carbonate cell under various 
operating conditions and employs Artificial Neural Networks (ANN) to model and 
optimize the electrolysis process. The findings underscore MCE's viability for fuel 
generation and demonstrate the effectiveness of ANN in predictive modeling and 
operational optimization, offering significant insights for future energy systems. 
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INTRODUCTION 
The global shift towards renewable energy sources is not just a 

response to environmental concerns but a strategic necessity for ensuring 
long-term energy security. Renewable technologies like solar and wind 
power offer clean energy solutions but are inherently intermittent, posing 
significant challenges for integration into existing power grids. The 
variability in power generation from these sources requires robust energy 
storage systems that can stabilize the supply-demand balance, ensuring a 
reliable and continuous energy flow. 

Energy storage technologies vary widely in their mechanisms and 
applications, ranging from batteries, which store energy in 
electrochemical form, to pumped hydro storage, which relies on 
gravitational potential energy. Among these, chemical energy storage, 
particularly in the form of hydrogen or synthetic natural gas (syngas), has 
emerged as a particularly promising solution. Electrolysis processes, 
which convert electrical energy into chemical energy stored in fuel, are 
central to this approach. These processes not only facilitate energy 
storage but also offer a pathway for producing carbon-neutral fuels, 
aligning with global decarbonization goals [1]. 

Molten Carbonate Electrolysis (MCE) is one such process that holds 
substantial promise due to its ability to operate at high temperatures, 
which enhances efficiency and allows for the co-generation of hydrogen 
and syngas. Moreover, MCE facilitates carbon dioxide capture and 
utilization, making it a dual-purpose technology that addresses both 
energy storage and carbon management challenges. Despite its potential, 
MCE has not been as extensively studied as other electrolysis 
technologies, particularly in terms of its optimization and control under 
varying operational conditions [2]. This paper seeks to fill this gap by 
investigating MCE through both experimental and computational lenses, 

using machine learning to enhance our understanding and control of the 
process. 

 
MOLTEN CARBONATE ELECTROLYSIS FOR FUEL 

GENERATION 
Molten Carbonate Electrolysis is a high-temperature process that 

operates by reversing the principles of a molten carbonate fuel cell 
(MCFC). In MCE, electrical energy is applied to drive chemical reactions 
that generate hydrogen and syngas, rather than producing electricity from 
fuel. The high operating temperatures, typically between 450°C and 
650°C, differentiate MCE from conventional low-temperature 
electrolysis methods such as Alkaline Electrolysis or Proton Exchange 
Membrane (PEM) Electrolysis, which operate at temperatures below 
100°C [3]. 

 
A. ELECTROCHEMICAL REACTIONS IN MCE 

The core reactions in MCE involve the reduction of carbon dioxide and 
water at the cathode and the oxidation of oxygen at the anode. The 
reactions can be summarized as follows: 

 
At the cathode: 
 
CO2 + H2O + 4𝑒− → CO32− + H2 
  
At the anode: 
 
CO32−→CO2+O2+4𝑒− 
 

In these reactions, the high temperature facilitates the efficient 
conduction of ions through the molten carbonate electrolyte, a mixture 
typically composed of lithium and potassium carbonates. This 
electrolyte not only serves as a 
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medium for ion transport but also ensures that the reactions 
occur efficiently, with the carbonate ions (CO3

2−) being 
transported from the cathode to the anode, where they are 
decomposed into carbon dioxide and oxygen [4]. 

The high-temperature operation of MCE also enables the use 
of less expensive and more readily available materials, such as 
nickel-based electrodes, which are stable under these 
conditions. Furthermore, the thermal energy required for the 
process can be partially supplied by external sources, reducing 
the overall electrical energy demand and enhancing the 
system's efficiency [5]. 

 
A. COMPARISON WITH OTHER 

ELECTROLYSIS TECHNOLOGIES 
MCE stands out among electrolysis technologies due to its 

ability to simultaneously produce hydrogen and capture carbon 
dioxide. In contrast, low-temperature electrolysis methods, 
such as Alkaline and PEM Electrolysis, operate at lower 
temperatures and do not inherently facilitate CO2 capture. 
Solid Oxide Electrolysis Cells (SOECs), another high-
temperature technology, operate at temperatures between 
600°C and 900°C, splitting water into hydrogen and oxygen. 
However, SOECs do not inherently incorporate CO2 in their 
reaction mechanisms, which limits their application in carbon 
management [6]. 

One of the key advantages of MCE is its potential for co-
electrolysis, where both CO2 and H2O are simultaneously 
reduced to produce syngas, a mixture of hydrogen and carbon 
monoxide. Syngas is a versatile feedstock that can be further 
processed into synthetic fuels, chemicals, or used directly in 
various industrial processes. The ability to produce syngas 
through electrolysis offers a pathway for integrating renewable 
energy into the chemical industry, providing a carbon-neutral 
alternative to traditional fossil fuel-based processes [7]. 

The potential for MCE to operate as part of an integrated 
energy system is significant. By coupling MCE with renewable 
energy sources, it is possible to generate hydrogen and syngas 
during periods of excess power production, storing energy in 
chemical form for later use. This not only stabilizes the grid 
but also provides a mechanism for the large-scale production 
of carbon-neutral fuels, contributing to both energy security 
and climate goals [8]. 

 
II. EXPERIMENTAL INVESTIGATION 

A. EXPERIMENTAL SETUP AND 
METHODOLOGY 

The experimental investigation of MCE was conducted 
using a laboratory-scale setup specifically designed to test the 
electrochemical performance of a single molten carbonate cell. 
The cell, with an active area of 20.5 cm², was constructed using 
nickel-based electrodes and a molten carbonate electrolyte 
composed of lithium and potassium carbonates in a 62/38 ratio 
[9]. 

The experimental apparatus included a controlled 
environment that allowed for the precise variation of 
temperature, gas flow rates, and pressure. This setup enabled a 
systematic study of the effects of these parameters on the cell's 

performance. Temperature control was achieved using dual 
external heaters, ensuring that the cell temperature remained 
stable within the desired range. Gas flows were meticulously 
regulated using mass flow controllers, which provided accurate 
delivery of steam, CO2, and hydrogen to the cathode, and 
oxygen to the anode [10]. 

The cell was operated under various conditions to assess its 
voltage, current density, and overall efficiency. The key 
experimental variables included: 

Cathode Feed Composition: The composition of the gas fed 
to the cathode was varied, with different ratios of steam, CO2, 
and hydrogen. 

Temperature: The cell was operated at different 
temperatures, specifically 600°C, 625°C, and 650°C, to 
observe the effects of temperature on electrochemical 
performance. 

Pressure: The experiments were conducted at a constant 
pressure of 1 bar to maintain consistency across tests [11]. 

Measurements were taken using high-precision instruments 
to ensure accuracy in assessing the cell's performance. Data on 
voltage, current density, and efficiency were collected and 
analyzed to identify trends and correlations between the 
operating conditions and the electrochemical outcomes. 

 
B. EXPERIMENTAL RESULTS 

The experimental results provided valuable insights into the 
operation of MCE under different conditions. One of the most 
significant findings was the strong influence of temperature on 
the cell's performance. As the temperature increased from 
600°C to 650°C, the cell's voltage decreased, indicating an 
improvement in efficiency. This trend is consistent with the 
theoretical expectations for high-temperature electrolysis 
processes, where higher temperatures enhance ionic 
conductivity and reduce polarization losses [12]. 

 

 
Figure 1: MCEC produced gas composition with dependence on 
operating pressure 

 
The composition of the cathode feed gas was also 

found to be a critical factor in determining the cell's 
performance. A balanced mixture of steam and 

CO2, with a small fraction of hydrogen, was found 
to optimize the electrochemical reactions at the 
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hydrogen, was beneficial in stabilizing the cell's operation. 
Hydrogen acted as a reducing agent, minimizing concentration 
polarization losses and enhancing overall efficiency [13]. 

Interestingly, the experimental data showed that higher 
hydrogen content in the cathode feed led to a decrease in the 
voltage required for electrolysis, particularly at higher current 
densities. This observation suggests that hydrogen may play a 
role in facilitating the formation of reactive intermediates, thus 
improving the overall kinetics of the electrochemical reactions 
[14]. 

Further analysis revealed that the optimal performance was 
achieved when the cathode feed gas contained approximately 
equal molar ratios of steam and CO2, with a small addition of 
hydrogen. This composition minimized the potential for 
carbon deposition on the cathode, which can occur when 
excess CO2 is present, leading to the formation of solid carbon 
through the Boudouard reaction. By carefully controlling the 
gas composition, the cell was able to operate efficiently 
without the risk of carbon deposition, which can degrade the 
performance and lifespan of the electrodes [15]. 

 
I. MACHINE LEARNING-BASED MODELING 

A. INTRODUCTION TO ARTIFICIAL 
NEURAL NETWORKS (ANN) 

Machine Learning (ML) has emerged as a powerful tool for 
modeling complex systems, particularly in scenarios where 
traditional mathematical models may not fully capture the 
intricate relationships between variables. Artificial Neural 
Networks (ANN), a subset of ML, are particularly well-suited 
for problems with nonlinear and multi-dimensional 
dependencies, such as those found in electrochemical 
processes [16]. 

ANNs are inspired by the structure and function of the 
human brain, consisting of interconnected nodes (neurons) 
organized in layers. These networks can learn from data by 
adjusting the weights of the connections between nodes, 
allowing them to make accurate predictions based on input 
variables [17]. 

In the context of MCE, ANN can be used to model the 
electrochemical behavior of the cell under different operating 
conditions. By training the network on experimental data, the 
ANN can learn to predict the cell's voltage and efficiency based 
on input parameters such as temperature, gas composition, and 
current density [18]. The advantage of using ANN lies in its 
ability to model complex, nonlinear interactions that would be 
difficult or impossible to capture using traditional modeling 
techniques. 

 
B. 4.2. CONSTRUCTION AND TRAINING 

OF ANN MODELS 
The ANN models developed in this study were designed to 

predict the MCE performance under various conditions. Four 
distinct models were constructed, each focusing on different 
influencing parameters: 

Temperature-Dependent Model: This model predicts cell 
voltage based on temperature and current density. It was 

designed to capture the thermal effects on the electrochemical 
processes within the cell. 

Fuel-Side Composition Model: This model predicts cell 
voltage based on the composition of the cathode feed gas, 
focusing on the interactions between different gas components 
and their impact on performance. 

Oxidant-Side Composition Model: This model predicts cell 
voltage based on the composition of the anode feed gas, which 
primarily consisted of oxygen in this study. 

Combined Thermal-Flow Model: This comprehensive 
model integrates temperature, gas composition, and current 
density to predict overall cell performance, accounting for the 
combined effects of thermal and flow dynamics [19]. 

Each model was constructed using a multi-layer perceptron 
architecture, with an input layer corresponding to the selected 
parameters, one or more hidden layers for feature extraction, 
and an output layer representing the predicted cell voltage. The 
models were trained using backpropagation, a supervised 
learning technique that minimizes the mean square error 
between predicted and actual outputs [20]. 

The training dataset was derived from the experimental data, 
with 70% used for training, 15% for validation, and 15% for 
testing. The models were optimized by adjusting the number 
of neurons in the hidden layers and selecting the most 
appropriate activation functions to ensure accurate predictions 
and prevent overfitting [21]. The training process involved 
multiple iterations, with the network weights being adjusted to 
minimize the error between the predicted and actual outputs. 

 
C. PERFORMANCE AND VALIDATION 

OF ANN MODELS 
The ANN models demonstrated excellent predictive 

accuracy, with average errors ranging from 0.17% for the 
temperature-dependent model to 0.35% for the fuel-side 
composition model. These results indicate that the ANN was 
able to effectively capture the nonlinear relationships between 
the input parameters and the electrochemical performance of 
the MCE [22]. 

The performance of the ANN models was validated against 
experimental data that were not included in the training set. 
This validation process is crucial for assessing the 
generalization capabilities of the models, ensuring that they 
can accurately predict performance under conditions that were 
not explicitly encountered during training. The models 
successfully predicted the cell's performance with high 
accuracy, even when tested on data points that were outside the 
range used for training. This capability is particularly valuable 
for applications where operating conditions may vary 
dynamically, and real-time predictions are necessary [23]. 

The robustness of the ANN models was further tested by 
introducing noise into the input data, simulating the effects of 
measurement errors or fluctuations in operating conditions. 
Despite the added noise, the models maintained their predictive 
accuracy, demonstrating their resilience and reliability in 
practical applications [24]. 
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I. OPTIMIZATION OF MCE OPERATION USING 
ANN 

A. OPTIMIZATION PROCESS 
The optimization of MCE operation was conducted using the 

trained ANN models, with the objective of minimizing the cell 
voltage while maximizing the current density. This approach is 
essential for improving the overall efficiency of the electrolysis 
process, as lower cell voltages reduce energy consumption, and 
higher current densities increase the rate of fuel production 
[25]. 

The optimization process involved adjusting the input 
parameters, such as temperature, gas composition, and flow 
rates, within the experimentally validated ranges. The ANN 
models were used to predict the effects of these adjustments on 
the cell's performance, and the optimal set of conditions was 
identified based on the model outputs [26]. 

 
The optimal operating conditions suggested by the ANN 

model included a temperature of 650°C and a cathode feed gas 
composition of 43.75% steam, 43.75% CO2, and 12.5% 
hydrogen. These conditions were chosen to balance the need 
for efficient electrolysis with the production of a desirable fuel 
composition, particularly hydrogen and syngas [27]. 

In addition to optimizing the operating conditions, the ANN 
models were also used to explore the potential for scaling up 
the MCE process. By simulating larger cell sizes and varying 
operational parameters, the models provided insights into how 
the process could be scaled while maintaining efficiency and 
stability. This type of modeling is particularly valuable for 
designing industrial-scale systems, where the complexity of 
interactions increases significantly [28]. 

 
B. VALIDATION OF OPTIMIZATION 

RESULTS 
The optimized operating conditions were experimentally 

validated using the laboratory-scale MCE setup. The results 
confirmed the ANN model's predictions, with the cell 
operating at a lower voltage and higher current density 
compared to the non-optimized conditions. This validation not 
only demonstrated the utility of ANN in predictive modeling 
but also highlighted its potential for practical process 
optimization [29]. 

The experimental validation process also included a detailed 
analysis of the fuel composition produced under the optimized 
conditions. Gas chromatography was used to quantify the 
hydrogen and syngas produced, confirming that the optimized 
conditions led to an increase in the desired fuel output while 
minimizing the formation of unwanted by-products [30]. 

The successful application of ANN for optimizing MCE 
operation suggests that machine learning techniques can play a 
crucial role in advancing electrochemical technologies. By 
enabling real-time optimization and control, ANN can help 
overcome some of the challenges associated with the dynamic 
and complex nature of electrolysis processes [31]. 

 
II. DISCUSSION 

The experimental and modeling results presented in this 
study provide a comprehensive understanding of the factors 
influencing MCE performance. The sensitivity of MCE to 
operating temperature and gas composition underscores the 
importance of precise control in achieving optimal fuel 
production and efficiency [32]. 

 
Figure 1: Comparison of volumetric and mass energy density the 
fuel generated by MCEC with SNG, hydrogen and methane 

The experimental findings confirmed that maintaining a 
high operating temperature is essential for reducing 
polarization losses and improving the overall efficiency of the 
electrolysis process. However, the study also revealed that the 
composition of the cathode feed gas plays a critical role in 
determining the cell's performance. A balanced mixture of 
steam and CO2, with a small fraction of hydrogen, was found 
to optimize the electrochemical reactions, minimizing 
concentration losses and maximizing fuel production [33]. 

The successful application of ANN in this study highlights 
its potential as a powerful tool for modeling and optimizing 
complex electrochemical processes. The ANN models 
developed in this work demonstrated high accuracy in 
predicting the cell's performance under various conditions, and 
they were able to generalize beyond the training data, making 
them valuable for real-time process optimization [34]. 

Despite the promising results, the study also acknowledges 
several limitations. The accuracy of the ANN models is highly 
dependent on the quality and quantity of the training data. In 
cases where the dataset is limited or contains significant 
measurement errors, the model's predictions may be less 
reliable. Future research could focus on expanding the dataset 
and exploring more sophisticated ANN architectures to 
enhance the predictive capabilities of the models further [35]. 

Another limitation is the inherent complexity of the 
electrolysis process, which involves multiple interacting 
variables. While ANN is effective in capturing these 
interactions, it does not provide explicit insights into the 
underlying physical mechanisms. Integrating ANN with 
traditional mechanistic models could offer a more 
comprehensive understanding of the process and improve the 
robustness of the predictions [36]. 
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systems for MCE. Such integration would enable dynamic 
adjustment of operating conditions in response to changing 
input parameters or external factors, such as fluctuations in 
renewable energy supply. This real-time optimization could 
significantly enhance the flexibility and resilience of MCE 
systems, making them more adaptable to the demands of future 
energy grids [37]. 

I. CONCLUSION 
This research demonstrates the feasibility of using Molten 

Carbonate Electrolysis for efficient fuel generation, with the 
added benefit of carbon dioxide utilization. The integration of 
machine learning, specifically Artificial Neural Networks, has 
proven to be a powerful tool for both modeling and optimizing 
the electrolysis process. 

The findings suggest that MCE, supported by advanced 
modeling techniques, could play a significant role in future 
energy systems, providing a sustainable and flexible solution 
for energy storage and fuel generation. The study also paves 
the way for further research into the application of machine 
learning in electrochemical processes, with the potential to 
significantly enhance the efficiency and scalability of these 
technologies [38]. 

By enabling real-time optimization and control, machine 
learning techniques such as ANN can help overcome some of 
the challenges associated with the dynamic and complex nature 
of electrolysis processes. As renewable energy sources become 
increasingly integrated into power grids, technologies like 
MCE, supported by advanced modeling and optimization tools, 
will be crucial in ensuring a stable and sustainable energy 
future [39]. 

Moreover, the study's findings have broader implications for 
the development of integrated energy systems, where MCE 
could be coupled with renewable energy sources and carbon 
capture technologies to create a fully sustainable energy cycle. 
This vision aligns with global efforts to transition to a low-
carbon economy, where innovative technologies like MCE will 
play a key role in achieving climate targets and ensuring energy 
security [40]. 
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